KV NO-2 ARMY CANTT. BHUJ

SUMMER VACATION HOMEWORK SESSION 2023-24

GRADE : XII

SUBJECT- MATHS

NOTE: HOLIDAY HOMEWORK(TO BE DONE IN WORKSHEET COPY)

1. Let R be a relation on the set N be defined by $\{(x, y) \forall x, y \in N, 2x + y = 41\}$. Then, R is

a. (a) Reflexive (b) Symmetric (c) Transitive (d) None of these

2. For real numbers x and y, we write x R y $\leftrightarrow x - y + \sqrt{2}$ is an irrational number. Then, the relation R is

(a) Reflexive (b) Symmetric (c) Transitive (d) None of these 3. The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set

A = {1, 2, 3} is

- (a) Reflexive but not symmetric
- (b) Reflexive but not transitive
- (c) Symmetric and transitive
- (d) Neither symmetric nor transitive
- 4. Consider the non-empty set consisting of children in a family and a relation R defined as a R b if a is brother of b. Then R is
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - (d) both symmetric and transitive
- 5. Let $P = \{(x, y) : x^2 + y^2 = 1, x, y \in R\}$. Then, P is
- 6. Reflexive (b) Symmetric (c) Transitive (d) Anti-symmetric
- 7. Let S be the set of all real numbers. Then, the relation
 - $R = \{(a, b) : 1 + ab > 0\}$ on S is
 - (a) Reflexive and symmetric but not transitive
 - (b) Reflexive and transitive but not symmetric
 - (c) Symmetric, transitive but not reflexive
 - (d) Reflexive, transitive and symmetric

8. Le	8. Let R be the relation in the set Z of all integers defined by			
R	$R = \{(x, y) : x - y \text{ is an integer}\}$. Then R is			
9. re	eflexive (b) symmetric (c) transitive	e (d) an equivalence	e relation	
10.	For the set $A = \{1, 2, 3\}$, define a	a relation R in the s	et A as follows	
R	$R = \{(1, 1), (2, 2), (3, 3), (1, 3)\} T$	hen, the ordered pa	ir to be added to R	
to	o make it the smallest equivalence	relation is		
	a. (a) (1, 3) (b) (3, 1)	(c) (2, 1)	(d) (1, 2)	
11.	Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), $	(2, 3)} be a relation	on in A. Then, the	
m	ninimum number of ordered pairs m	hay be added, so th	at R becomes an	
ec	equivalence relation, is			
	a. (a) 7 (b) 5	(c) 1	(d)4	
12.Le	et $A = \{1, 2, 3\}$. Then, the number	of relations contain	ning (1, 2) and (1,	
3)	3), which are reflexive and symmetr	ic but not transitive	e, is	
	a. (a) 1 (b) 2	(c) 3	(d) 4	
13.	Let $f : R \rightarrow R$ be a function defined	1 by $f(x) = x^3 + 4$, th	en f is	
	a. (a) Injective (b) Surjective (c) Bijective (d) N	lone of these	
14.	Let $X = \{0, 1, 2, 3\}$ and $Y = \{-1, 2\}$	0, 1, 4, 9 and a f	unction $f: X \rightarrow Y$	
de	lefined by $y = x^2$, is			
15.	one-one onto (b) one-one into (c)	many-one onto (d)) many-one into	
16.	Let g:R \to R g(x) = $x^2 - 4x - 5$, the	n		
17.	g is one-one on R (b) g is not one-one	on R	
18.	g is bijective on R (d) None of these		
19.	The mapping $f : N \rightarrow N$ given by $f(n)$	$() = 1 + n^2$, $n \in \mathbb{N}$	when N is the set of	
na	natural numbers, is			
20.	The function f: $R \rightarrow R$ given by f(x	$) = x^{3} - 1$ is		
	a. (a) a one-one function	(b) an onto fur	nction	
	b. (c) a bijection	(d) neither one	e-one nor onto	
21.	A function $f : X \rightarrow Y$ is said to be on	to, if for every $y \in$	Y, there exists an	
el	element x in X such that			
	a. (a) $f(x) = y$ (b) $f(y) = x$ ((c) $f(x) + y = 0$	(d) $f(y) + x =$	
	0			
22.	Let R be the relation in the set $\{1$, 2, 3, 4} given by	$R = \{(1, 2), (2, 2), $	
(1, 1), (4, 4), (1, 3), (3, 3), (3, 2).				
(a) R is reflexive and symmetric but not transitive				

(b) R is reflexive and transitive but not symmetric

	 (c) R is symmetric and transitive but not (d) R is equivalence relation 					
23.	23. Let A = $\{1, 2, 3\}$ and B = $\{a, b, c\}$, then the number of bijective					
fu	nctions from A to	B are				
	a. (a) 2 4	(b) 8		(c) 6)	(d)
24. ar	The number of sund B = {a, b} is	urjective function	ons fror	m A to B	where $A = -$	{1, 2, 3, 4}
	a. (a) 14	(b) 12	(c) 2		(d) 15
25.	The function f : R \rightarrow R defined by f (x) = (x - 1) (x - 2) (x - 3) is					
26.	(c) both one-one	and onto	((d) neithe	er one-one r	nor onto
27.	If[2132]A[-325	$5 - 3] = I_2$, then	A=			
	a.(a)[1110] [0111]	(b)[110	1]	(c) [1	1011]	(d)
28.	If A=[3 2 0 1],the	$n(A^{-1})^3$ is equal	to		1	
	a. (a) $\frac{1}{27} \begin{bmatrix} 1 - 26027 \end{bmatrix}$ (b) $\frac{1}{27} \begin{bmatrix} 126027 \end{bmatrix}$ (c) $\frac{1}{27} \begin{bmatrix} 1 - 260 - 27 \end{bmatrix}$					
	$(d)\frac{1}{27}[-$	1 - 260 - 27]				
29.	If A= [0 3 2 0] and a. (a)-1/6 (b)1	d A ⁻¹ =mA,then /3 (c)-1/3	m is ec	qual to (d)1	/6	
30.	If I_3 is the identit	y matrix of ord	er 3,the	en $I_{3}^{-1} =$		
	a. (a)O	(b)3 <i>I</i> ₃	((c) I ₃	(d)No	t necessarily
24	exist				0 these	
31.	(a)both A and	B are singular	ces suci	n that AB (b)ei	ither of ther	n is singular
22	(c)neither of the	nem is singular		(d)n	one of these	9
(a)is a scalar matrix (b)is a zero matrix						
	(c) is an identi	ty matrix	()) ((d)none o	of these	

33. For how many integral values of x in the closed interval [-4,-1], matrix $[3 - x - 123 - 1x + 2x + 3 - 12]$ is singular?				
-	(a) Zero	(b) 2	(c) 1	(d) 3
34. If A and B are square matrices of sixe nXn, such that $A^2 - B^2$ =(A+B)(A-B), then which one of the following is always true- (a)AB=BA (b) either of A or B is a zero matrix				
35.	If $\begin{bmatrix} a_{ii} \end{bmatrix}$ be a	a diagonal matr	ix with diagonal ele	ement all different and B=[
$b_{ij}]_{nxn}$ be some matrix .Let AB=[$c_{ij}]_{nxn}$, then c_{ij} is equal to				
a)	$a_{jj}b_{ij}$	(b) $a_{ii}b_{ij}$	(c) $a_{ij}b_{ij}$	(d) $a_{ij}b_{ji}$
36. If A is a skew matrix of odd order, then $ adjA $ is equal to				
(a	ı) 0(b) n	(c) n ²	(d) none	e of these
37. A square matrix P satisfies $P^2 = I - P$ where I is the identity matrix. If				
$P^{n} = 5I - 8P$, then $n =$				
(a	a) 4(b) 5	(c) 6	(d) 7	
38. If $A = [4x + 22x - 3x + 1]$ is symmetric ,then x=				
(a	ı) 3(b) 5	(c) 2	(d) 4	
39.	If A is 3X4 m	natrix and B is a	matrix such that	A'B and BA' are defined,
th	en B is of the	e type		
(a	i)3X 4	(b) 3X3	(c) 4X4	(d) 4X3

CASE STUDY QUESTIONS

 Aman and Ramesh are playing Ludo at home during Covid-19.While rolling the dice, Aman's sister Lata observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}.Let A be the set of players while B be the set of all possible outcomes. Let A={A,R},B={1,2,3,4,5,6}.Using the information given above, answer the following:

(i)Let R:B \rightarrow B be defined by R ={(x,y): y =x}is

(a) Reflexive and transitive but not symmetric

(b) Reflexive (c) Refle (d) Equivalen	 (b) Reflexive and symmetric but not transitive (c) Reflexive but not symmetric and transitive (d) Equivalence 			
(ii) Let R :B→E R is	(ii) Let R : B→B be defined by R={ $(1,2)(2,2)(1,3)(3,4)(3,1))(4,3)(5,5)$ }. Then R is			
(a)Symmetric		(b) Reflexive		
(c) Transitive	(c) Transitive		(d) None of these three	
(iii) Let R :B→B be defined by $R = \{(2,1)(1,2)(2,2)(3,3)(4,4)(5,5)(6,6)\},$ then R is				
(a)Symmetric Transitive and s	symmetric	(b) Reflexive (d) Equivalence	and Transitive	(c)
(iv) Lata wants to know the number of relations possible from A to B .How many relations are possible?				
(a)36	(b) 64	(c) 6!	(d) 2 ¹²	
(v) Lata wants to know the number of functions from $A \rightarrow B$, How many numbers of functions are possible?				
(a)36	(b) 64	(c) 6!	(d) 2 ¹²	
2.A Robot works on the software which follows function $f(x) = \frac{x-2}{x-1}$. If the value of domain is put in place of x. This robot works and performs various works. Based on the above in information, answer the following:				

(i) What will the value/values of x ,on which this robot works

(c)On all real values except 2 (d)On all real values except {1,2}

(ii) If range denotes the number of works performed, then range of the works performed will be

(a) $R - \{1\}$	(b) $R - \{2\}$
(c) $R - \{1, 2\}$	(d)On all real values

(iii) If this function is defined from f:R-{1} $\rightarrow R$ – {1}			
(a)Injective	(b) Surjective		
(c)Bijective	(d) Into		
(iv) If a Robot follows the f:R- $\{1\} \rightarrow R$, then f(x) is			
(a)Injective	(b) Surjective		
(c)Bijective	(d) Into		
(v) If a Robot follows the f:N-{1} $\rightarrow R - \{1\}$, then f(x) is			
(a)Injective	(b) Surjective		
(c)Bijective	(d) Into		